The effects of water regime on phosphorus responses of rainfed lowland rice cultivars.
نویسندگان
چکیده
BACKGROUND AND AIMS Soil phosphorus (P) solubility declines sharply when a flooded soil drains, and an important component of rice (Oryza sativa) adaptation to rainfed lowland environments is the ability to absorb and utilize P under such conditions. The aim of this study was to test the hypothesis that rice cultivars differ in their P responses between water regimes because P uptake mechanisms differ. METHODS Six lowland rice cultivars (three considered tolerant of low P soils, three sensitive) were grown in a factorial experiment with three water regimes (flooded, moist and flooded-then-moist) and four soil P levels, and growth and P uptake were measured. Small volumes of soil were used to maximize inter-root competition and uptake per unit root surface. The results were compared with the predictions of a model allowing for the effects of water regime on P solubility and diffusion. KEY RESULTS The plants were P stressed but not water stressed in all the water regimes at all P levels except the higher P additions in the flooded soil. The cultivar rankings scarcely differed between the water regimes and P additions. In all the treatments, the soil P concentrations required to explain the measured uptake were several times the concentration of freely available P in the soil. CONCLUSIONS The cultivar rankings were driven more by differences in growth habit than specific P uptake mechanisms, so the hypothesis cannot be corroborated with these data. Evidently all the plants could tap sparingly soluble forms of P by releasing a solubilizing agent or producing a greater root length than measured, or both. However, any cultivar differences in this were not apparent in greater net P uptake, possibly because the restricted rooting volume meant that additional P uptake could not be converted into new root growth to explore new soil volumes.
منابع مشابه
Effects of water-saving irrigations on different rice cultivars (Oryza sativa L.) in field conditions
A more efficient water use system is needed for agriculture. This is more evidence for rice production with a higher water use for economical production. A large cultivar×water regime interaction exists for grain yield in rice. Therefore, information is required to adopt new rice cultivars with high yield potential under water-saving conditions. The objectives of this study were to analyze the ...
متن کاملEstimation of Cultivated Area, Number of Farming Households and Yield for Major Rice-growing Environments in Africa
(eds M.C.S. Wopereis et al.) 35 Upland environments are situated at the high end of the toposequence, where rice depends solely on rainfall as the water table is out of the reach of rice roots for much of the growing season. At the lower end of the toposequence, rice plants can reach the water table or profit directly from flood water. Along the toposequence, interactions exist between environm...
متن کاملInfluence of fertilizer management and water regime on methane emission from rice fields
Experiments were conducted to determine methane emission from a rainfed lowland rice field (water depth about 3–30 cm) and an irrigated shallow rice field (4–6 cm), both planted to the same cultivar, cv. ‘Gayatri,’ as influenced by fertilizer management practices. Methane emission peaked from 100 to 125 days after transplanting followed by a decline in rainfed lowland field plots. Application o...
متن کاملResponse of different rice cultivars (Oryza sativa L.) to water-saving irrigation in greenhouse conditions
Due to increasing water and growing demand for food a more efficient water use system is needed for agriculture. This is more evidence for rice production with a higher water use for economical production. A large cultivar×water regime interaction exists for grain yield in rice. Therefore, information is required to adopt new rice cultivars with high yield potential under water-saving condition...
متن کاملDifferential responses of two Iranian rice cultivars to arsenite toxicity
Arsenic (As) is a toxic metalloid which is usually found in rice fields as a contamination and has negative effects on the plant growth and reduces the crop yield. Similar to heavy metals, the deleterious effects of As may be due to, at least in part, the amount of absorbed As and disturbance of the plant water status. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of botany
دوره 103 2 شماره
صفحات -
تاریخ انتشار 2009